Modeling of Pulsatile Blood flow in a weak magnetic field

نویسنده

  • Chee Teck Phua
چکیده

Blood pulse is an important human physiological signal commonly used for the understanding of the individual physical health. Current methods of non-invasive blood pulse sensing require direct contact or access to the human skin. As such, the performances of these devices tend to vary with time and are subjective to human body fluids (e.g. blood, perspiration and skin-oil) and environmental contaminants (e.g. mud, water, etc). This paper proposes a simulation model for the novel method of non-invasive acquisition of blood pulse using the disturbance created by blood flowing through a localized magnetic field. The simulation model geometry represents a blood vessel, a permanent magnet, a magnetic sensor, surrounding tissues and air in 2-dimensional. In this model, the velocity and pressure fields in the blood stream are described based on Navier-Stroke equations and the walls of the blood vessel are assumed to have no-slip condition. The blood assumes a parabolic profile considering a laminar flow for blood in major artery near the skin. And the inlet velocity follows a sinusoidal equation. This will allow the computational software to compute the interactions between the magnetic vector potential generated by the permanent magnet and the magnetic nanoparticles in the blood. These interactions are simulated based on Maxwell equations at the location where the magnetic sensor is placed. The simulated magnetic field at the sensor location is found to assume similar sinusoidal waveform characteristics as the inlet velocity of the blood. The amplitude of the simulated waveforms at the sensor location are compared with physical measurements on human subjects and found to be highly correlated. Keywords— blood pulse, magnetic sensing, non-invasive measurement, magnetic disturbance

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mathematical Modeling of Micropolar Blood Flow in a Stenosed Artery Under the Body Acceleration and Magnetic Field

Blood flow is modeled as non-Newtonian micropolar fluid. The non-linear governing equations of continuum and momentum in the cylindrical coordinate are being discretized using a finite difference approach and have been solved iteratively ,through Crank-Nicolson method. The blood velocity distribution, volumetric flow rate and Resistance to blood flow at the stenosis throat are computed for vari...

متن کامل

Mathematical modeling of blood flow in a stenosed artery under MHD effect through porous medium

In this investigation, a mathematical model for studying oscillatory flow of blood in a stenosed artery under the influence of transverse magnetic field through porous medium has been developed. The equations of motion of blood flow are solved analytically. The analytical expressions for axial velocity, volumetric flow rate, pressure gradient, resistance to blood flow and shear stress have been...

متن کامل

Blood Flow Simulation in an Aorta with a mild coarctation Using Magnetic Resonance Angiography and Finite Volume Method

Coarctation of the aorta is one of the five main congenital cardiovascular failures, accounting for 6–8 percent of these failures. This research aimed to simulate the blood flow of a seventeen-year-old male teen with a mild coarctation at one-third of his aorta's descending branch. The simulation was performed by extracting the domain and the input pulsatile velocity signal as the boundary cond...

متن کامل

PULSATILE MOTION OF BLOOD IN A CIRCULAR TUBE OF VARYING CROSS-SECTION WITH SLIP FLOW

Pulsatile motion of blood in a circular tube of varying cross-section has been developed by considering slip flow at the tube wall and the blood to be a non- Newtonian biviscous incompressible fluid. The tube wall is supposed to be permeable and the fluid exchange across the wall is accounted for by prescribing the normal velocity of the fluid at the tube wall. The tangential velocity of the fl...

متن کامل

Numerical Simulation of Blood Flow Mixed with Magnetic Nanoparticles under the Influence of AC and DC Magnetic Field

Nanoparticles combined with magnetic fields are one of the most important research areas in the field of biomedical engineering. Direct Current (DC) magnetic and Alternative Current (AC) magnetic fields are often used for controlling nanoparticles. It is also used for hyperthermia treatment. The purpose of the current study is to investigate the effect of DC and AC magnetic field on nanoparticl...

متن کامل

Effect of six non-Newtonian viscosity models on hemodynamic parameters of pulsatile blood flow in stenosed artery

A numerical study of hemodynamic parameters of pulsatile blood flow is presented in a stenotic artery with A numerical study of hemodynamic parameters of pulsatile blood flow is presented in a stenotic artery with non-Newtonian models using ADINA. Blood flow was considered laminar, and the arterial wall was considered rigid. Studied stenosis severities were 30, 50, and 70% of the cross-section...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009